Mathematics - Solved Paper 2015
 SECTION A (40 Marks)
 (Answer all questions from this Section)

Question 1 :

(a) A shopkeeper bought an article for ₹ $\mathbf{3 , 4 5 0}$. He marks the price of the article 16% above the cost price. The rate of sales tax charged on the article is $\mathbf{1 0 \%}$. Find the :
(i) marked price of the article.
(ii) price paid by a customer who buys the article.

Solution :

(i) For shopkeeper :
C.P. of the article $=₹ 3,450$
and, M.P. of the article $=₹ 3,450+16 \%$ of ₹ 3,450

$$
=₹ 3,450+₹ 552=₹ 4,002
$$

Ans.
(ii) $\because \quad$ Sales tax $=10 \%$ of ₹ $4,002=₹ 400.20$
$\therefore \quad$ Customer paid $=₹ 4,002+₹ 400.20=₹ \mathbf{4 , 4 0 2 . 2 0}$
Ans.
(b) Solve the following inequation and write the solution set :

$$
\begin{equation*}
13 x-5<15 x+4<7 x+12, x \in R \tag{3}
\end{equation*}
$$

Represent the solution on a real number line.

Solution :

$$
\left.\begin{array}{rlrlrl}
& & 13 x-5 & <15 x+4<7 x+12 & \\
\Rightarrow & & 13 x-5 & <15 x+4 & \text { and } & 15 x+4 \\
\Rightarrow & & -2 x & <9 & & \text { and } \\
& \Rightarrow & & 2 x & >-9 &
\end{array}\right)
$$

Combining we get : $-4.5<x<1$
\therefore Solution set $=\{x: x \in R$ and $-4 \cdot 5<x<1\}$
Ans.
Solution on a real number line :

Ans.
(c) Without using trigonometric tables evaluate :

$$
\begin{equation*}
\frac{\sin 65^{\circ}}{\cos 25^{\circ}}+\frac{\cos 32^{\circ}}{\sin 58^{\circ}}-\sin 28^{\circ} . \sec 62^{\circ}+\operatorname{cosec}^{2} 30^{\circ} \tag{4}
\end{equation*}
$$

Solution :

Since,

$$
\begin{aligned}
& \sin 65^{\circ}=\sin \left(90^{\circ}-25^{\circ}\right)=\cos 25^{\circ} \\
& \sin 58^{\circ}=\sin \left(90^{\circ}-32^{\circ}\right)=\cos 32^{\circ}
\end{aligned}
$$

and,

$$
\sec 62^{\circ}=\sec \left(90^{\circ}-28^{\circ}\right)=\operatorname{cosec} 28^{\circ}=\frac{1}{\sin 28^{\circ}}
$$

$\therefore \quad \frac{\sin 65^{\circ}}{\boldsymbol{\operatorname { c o s }} 25^{\circ}}+\frac{\boldsymbol{\operatorname { c o s }} 32^{\circ}}{\sin 58^{\circ}}-\sin 28^{\circ} . \sec 62^{\circ}+\operatorname{cosec}^{2} 30^{\circ}$

$$
\begin{aligned}
& =\frac{\cos 25^{\circ}}{\cos 25^{\circ}}+\frac{\cos 32^{\circ}}{\cos 32^{\circ}}-\sin 28^{\circ} \cdot \frac{1}{\sin 28^{\circ}}+(2)^{2} \\
& =1+1-1+4=\mathbf{5}
\end{aligned}
$$

Ans.
Question 2 :
(a) If $A=\left[\begin{array}{ll}3 & x \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{cc}9 & 16 \\ 0 & -y\end{array}\right]$, find x and y when $A^{2}=B$.

Solution :

$$
\begin{aligned}
\mathrm{A}^{2} & =\mathrm{A} \times \mathrm{A} \\
& =\left[\begin{array}{ll}
3 & x \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
3 & x \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
9+0 & 3 x+x \\
0+0 & 0+1
\end{array}\right]=\left[\begin{array}{cc}
9 & 4 x \\
0 & 1
\end{array}\right] \\
\text { Since, } \mathrm{A}^{2}= & \mathrm{B}
\end{aligned} \begin{aligned}
\Rightarrow & \left.\begin{array}{cc}
9 & 4 x \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
9 & 16 \\
0 & -y
\end{array}\right] \\
& \Rightarrow 4 x=16 \text { and } 1=-y \text { i.e. } x=4 \text { and } y=-\mathbf{1}
\end{aligned}
$$

Ans.
(b) The present population of a town is $\mathbf{2 , 0 0 , 0 0 0}$. Its population increases by $\mathbf{1 0 \%}$ in the first year and $\mathbf{1 5 \%}$ in the second year. Find the population of the town at the end of the two years.

Solution :

Population at the end of two years

$$
=2,00,000\left(1+\frac{10}{100}\right)\left(1+\frac{15}{100}\right)=\mathbf{2 , 5 3 , 0 0 0}
$$

Ans.
(c) Three vertices of a parallelogram ABCD taken in order are $\mathbf{A}(\mathbf{3}, 6), \mathbf{B}(5,10)$ and $C(3,2)$, find :
(i) the coordinates of the fourth vertex D.
(ii) length of diagonal BD.
(iii) equation of side $A B$ of the parallelogram $A B C D$.

Solution :

(i) Let $\mathrm{D}=(x, y)$.

Since, diagonals of a parallelogram bisect each other.
\therefore Mid-point of AC $=$ Mid-point of BD

$$
\Rightarrow \quad\left(\frac{3+3}{2}, \frac{6+2}{2}\right)=\left(\frac{5+x}{2}, \frac{10+y}{2}\right)
$$

$\Rightarrow x=1$ and $y=-2$ i.e. $\mathbf{D}=(\mathbf{1}, \mathbf{- 2})$
Ans.
(ii) $\because \quad \mathrm{B}=(5,10)$ and $\mathrm{D}=(1,-2)$
$\therefore \quad \mathbf{B D}=\sqrt{(5-1)^{2}+(10+2)^{2}}$

$$
=\sqrt{16+144}=\sqrt{160}=\sqrt{16 \times 10}=4 \sqrt{10}
$$

Ans.
(iii) \because

$$
\mathrm{A}=(3,6)=\left(x_{1}, y_{1}\right) \text { and } \mathrm{B}=(5,10)=\left(x_{2}, y_{2}\right)
$$

$\therefore \quad$ Slope of $\mathrm{AB}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
=\frac{10-6}{5-3}=\frac{4}{2}=2
$$

$\because \quad$ Slope $(m)=2$ and $\mathrm{A}=(3,6)=\left(x_{1}, y_{1}\right)$
Equation of AB :

$$
\begin{aligned}
y-y_{1}=m\left(x-x_{1}\right) & \Rightarrow \mathrm{y}-6=2(x-3) \\
& \Rightarrow \mathrm{y}-6=2 x-6 \text { i.e. } \boldsymbol{y}=\mathbf{2 x}
\end{aligned}
$$

Ans.

Question 3 :

(a) In the given figure, ABCD is a square of side $21 \mathrm{~cm} . A C$ and $B D$ are two diagonals of the square. Two semi circles are drawn with AD and BC as diameters. Find the area of the shaded region. (Take $\pi=\frac{\mathbf{2 2}}{7}$).

Solution :
Area of $(\triangle \mathrm{AOD}+\triangle \mathrm{BOC})$

$$
\begin{aligned}
& =\frac{1}{2} \times \text { area of square } \mathrm{ABCD} \\
& =\frac{1}{2} \times(21)^{2} \text { sq. } \mathrm{cm}=220.5 \text { sq. cm }
\end{aligned}
$$

Area of two semi-circles

$$
\begin{aligned}
& =\text { area of a circle with diameter } 21 \mathrm{~cm} \\
& =\pi r^{2} \\
& =\frac{22}{7} \times \frac{21}{2} \times \frac{21}{2} \text { sq. cm } \\
& =346.5 \text { sq. cm }
\end{aligned}
$$

\therefore Area of the shaded region

$$
=220 \cdot 5 \text { sq. } \mathrm{cm}+346 \cdot 5 \text { sq. } \mathrm{cm}=\mathbf{5 6 7} \text { sq. } \mathbf{~ c m}
$$

Ans.
(b) The marks obtained by $\mathbf{3 0}$ students in a class assessment of $\mathbf{5}$ marks is given below :

Marks	0	1	2	3	4	5
No. of students	1	3	6	10	5	5

Calculate the mean, median and mode of the above distribution.

Solution :

Marks (x)	No. of students (f)	$f x$	Comulative frequency
0	1	0	frequency 1 4 10 $--\frac{20}{25}-$ 30
1	3	3	
2	6	12	
3	10	30	
4	5	20	
5	5	25	
	$n=30$	$\Sigma f x=90$	

$$
\begin{aligned}
\text { Mean } & =\frac{\sum f x}{n}=\frac{90}{30}=\mathbf{3} \\
\text { Median } & =\frac{1}{2}\left[\left(\frac{30}{2}\right)^{\text {th }} \text { term }+\left(\frac{30}{2}+1\right)^{\text {th }} \text { term }\right] \\
& =\frac{1}{2}\left[15^{\text {th }} \text { term }+16^{\text {th }} \text { term }\right]=\frac{1}{2}(3+3)=\mathbf{3}
\end{aligned}
$$

Ans.

Ans.
Mode $=$ The number (marks) with highest frequency $=\mathbf{3}$
Ans.
(c) In the figure given alongside, O is the centre of the circle and $S P$ is a tangent. If $\angle S R T=65^{\circ}$, find the values of x, y and z.
[4]

Solution :

\because Angle between radius OS and tangent $\mathrm{SP}=90^{\circ}$
$\Rightarrow \angle \mathrm{OSP}=90^{\circ}=\angle \mathrm{TSP}$
In $\Delta \mathrm{TSR}, x+90^{\circ}+65^{\circ}=180^{\circ} \Rightarrow \boldsymbol{x}=\mathbf{2 5}^{\circ}$
Ans.
In $\triangle \mathrm{TOQ}, \mathrm{OT}=\mathrm{OQ}=$ radius
$\Rightarrow \quad \angle \mathrm{OQT}=x=25^{\circ}$
\therefore Exterior angle $y=x+\angle$ OQT i.e. $y=25^{\circ}+25^{\circ}=\mathbf{5 0}^{\circ}$
Ans.
Alternative method for finding the value of \boldsymbol{y} :
Minor arc SQ subtends angle y at the centre and angle x at point T on the remaining circumference of the circle. Also, angle at centre is twice the angle at remaining circumference $\Rightarrow y=2 x$ i.e. $\boldsymbol{y}=2 \times 25^{\circ}=\mathbf{5 0}^{\circ}$

Ans.

$$
\begin{aligned}
\text { In } \triangle \mathrm{OSP}, \quad y+\angle \mathrm{OSP}+z & =180^{\circ} \\
50^{\circ}+90^{\circ}+z & =180^{\circ} \Rightarrow z=\mathbf{4 0}^{\circ}
\end{aligned}
$$

Ans.
Question 4 :
(a) Katrina opened a recurring deposit account with a Nationalised Bank for a period of 2 years. If the bank pays interest at the rate of 6% per annum and the monthly instalment is $₹ \mathbf{1 , 0 0 0}$, find the :
(i) interest earned in 2 years.
(ii) matured value.

Solution :

(i) \because Monthly instalment (P) $=$ ₹ 1,000

$$
\text { no. of instalments }(n)=2 \times 12=24
$$

and,

$$
\text { rate }(r)=6 \%
$$

$$
\therefore \quad \text { Interest }=\mathrm{P} \times \frac{n(n+1)}{2 \times 12} \times \frac{r}{100}
$$

$$
=₹ 1,000 \times \frac{24 \times 25}{2 \times 12} \times \frac{6}{100}=₹ \mathbf{1 , 5 0 0}
$$

Ans.
(ii) \because Total money deposited $=\mathrm{P} \times n$

$$
=₹ 1,000 \times 24=₹ 24,000
$$

$\therefore \quad$ Matured value $=$ Money deposited + Interest
$=₹ 24,000+₹ 1,500=₹ \mathbf{2 5 , 5 0 0}$
Ans.
(b) Find the value of ' K ' for which $x=3$ is a solution of the quadratic equation, $(K+2) x^{2}-K x+6=0$
Thus find the other root of the equation.

Solution :

$x=3$ is a solution of equation $(\mathrm{K}+2) x^{2}-\mathrm{K} x+6=0$
$\Rightarrow \quad(\mathrm{K}+2) \times 9-\mathrm{K} \times 3+6=0$
$\Rightarrow \quad 9 \mathrm{~K}+18-3 \mathrm{~K}+6=0 \quad$ i.e. $\quad 6 \mathrm{~K}=-24$ and $\mathrm{K}=-\mathbf{4} \quad$ Ans.
For $K=-4, \quad(K+2) x^{2}-K x+6=0$
$\Rightarrow \quad-2 x^{2}+4 x+6=0 \quad$ i.e. $x^{2}-2 x-3=0$
$\Rightarrow \quad x^{2}-3 x+x-3=0 \quad$ i.e. $\quad x(x-3)+1(x-3)=0$
$\Rightarrow \quad(x-3)(x+1)=0 \quad$ i.e. $\quad x-3=0 \quad$ or $\quad x+1=0$
$\Rightarrow \quad x=3$ or $x=-1$
Since, $x=3$ is already given to be one root (solution) of the equation.
\therefore The other root of the equation is $\boldsymbol{x}=\mathbf{- 1}$.
Ans.
(c) Construct a regular hexagon of side 5 cm . Construct a circle circumscribing the hexagon. All traces of construction must be clearly shown.

Solution :

Steps :

1. Draw $\mathrm{AB}=5 \mathrm{~cm}$.
2. Construct angle $\mathrm{ABP}=120^{\circ}$ and from BP cut $\mathrm{BC}=5 \mathrm{~cm}$.
3. Construct angle $\mathrm{BCQ}=120^{\circ}$ and from CQ cut $\mathrm{CD}=5 \mathrm{~cm}$.
4. Construct angle $\mathrm{BAR}=120^{\circ}$ and from $A R$ cut $A F=5 \mathrm{~cm}$.
5. Taking D and F as centres, draw two equal arcs each of radius 5 cm . Let these arcs intersect each other at point E . Join EF and ED.
$A B C D E F$ is the required regular hexagon of side 5 cm .

Further, draw perpendicular bisectors of any two non-parallel sides of the hexagon. Here, the perpendicular bisectors of sides AB and AF are drawn, which meet each other at point O .
Taking O as centre and OA as radius, draw a circle which will pass through all the vertices of the hexagon ABCDEF and is the required circumcircle.

SECTION B (40 Marks)

(Answer any four questions from this Section)

Question 5 :

(a) Use a graph paper for this question taking $1 \mathrm{~cm}=1$ unit along the x axis and the y axis both :
(i) Plot the points $\mathrm{A}(0,5), \mathrm{B}(2,5), \mathrm{C}(5,2), \mathrm{D}(5,-2), \mathrm{E}(2,-5)$ and $\mathrm{F}(0,-5)$.
(ii) Reflect the points B, C, D and E on the y-axis and name them respectively as $\mathbf{B}^{\prime}, \mathbf{C}^{\prime}, \mathbf{D}^{\prime}$ and E^{\prime}.
(iii) Write the coordinates of $\mathbf{B}^{\prime}, \mathbf{C}^{\prime}, \mathrm{D}^{\prime}$ and E^{\prime}.
(iv) Name the figure formed by BCDEE $\mathbf{E}^{\prime} \mathbf{D}^{\prime} \mathbf{C}^{\prime} \mathbf{B}^{\prime}$.
(v) Name a line of symmetry for the figure formed.

Solution :

(iii) $\quad \mathbf{B}^{\prime}=(-2,5), \mathbf{C}^{\prime}=(-5,2), \mathbf{D}^{\prime}=(-5,-2)$ and $\mathbf{E}^{\prime}=(-2,-5)$.
(iv) Octagon.

Ans.
Ans.
(v) x-axis i.e. $y=0$

Ans.
[Here, for the figure formed, y-axis i.e. $x=0$ may also be taken as line of symmetry].
(b) Virat opened a Saving Bank account in a bank on $\mathbf{1 6}^{\text {th }}$ April 2010. His pass book shows the following entries :

Date	Particulars	Withdrawal (₹)	Deposit (₹)	Balance (₹)
April 16 $^{\text {th }}$ 2010	By cash	-	2500	2500
April 28 $^{\text {th }}$	By cheque	-	3000	5500
May 9 $^{\text {th }}$	To cheque	850	-	4650
May 15 $^{\text {th }}$	By cash	-	1600	6250
May 24 $^{\text {th }}$	To cash	1000	-	5250
June 4 $^{\text {th }}$	To cash	500	-	4750
June 30 $^{\text {th }}$	By cheque	-	2400	7150
July 3 $^{\text {rd }}$	By cash	-	1800	8950

Calculate the interest Virat earned at the end of $31^{\text {st }}$ July, 2010 at $\mathbf{4 \%}$ per annum interest. What sum of money will he receive if he closes the account on $1^{\text {st }}$ August, 2010 ?

Solution :

Principal for April	$=₹ 00 \quad$ [Account is opened on $16^{\text {th }}$ April]
Principal for May	$=₹ 4,650$
Principal for June	$=₹ 4,750$
Principal for July	$=₹ 8,950$
Total principal for one month	$=₹ 18,350$

$$
\begin{aligned}
\text { Interest earned } & =\frac{\text { PRT }}{100} \\
& =\frac{₹ 18,350 \times 4 \times 1}{100 \times 12}=₹ \mathbf{6 1 . 1 7}
\end{aligned}
$$

Ans.
Money received on closing the account on 1st August, 2010

$$
\begin{aligned}
& =\text { Last balance }+ \text { Interest earned } \\
& =₹ 8,950+₹ 61.17=₹ \mathbf{9 , 0 1 1 . 1 7}
\end{aligned}
$$

Ans.
Question 6:
(a) If a, b, c are in continued proportion, prove that

$$
\begin{equation*}
(a+b+c)(a-b+c)=a^{2}+b^{2}+c^{2} \tag{3}
\end{equation*}
$$

Solution :
a, b, c are in continued proportion $\Rightarrow b^{2}=a c$
Now, $\quad(\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{c})(\boldsymbol{a}-\boldsymbol{b}+\boldsymbol{c})=(a+c)^{2}-b^{2}$

$$
\begin{aligned}
& =a^{2}+c^{2}+2 a c-b^{2} \\
& =a^{2}+c^{2}+2 b^{2}-b^{2}
\end{aligned}
$$

$$
\left[\because a c=b^{2}\right]
$$

$$
=a^{2}+b^{2}+c^{2} \quad \text { Hence Proved }
$$

(b) In the figure, given alongside, ABC is a triangle and $B C$ is parallel to the y-axis. $A B$ and $A C$ intersect the y-axis at P and Q respectively.
(i) Write the coordinates of A.
(ii) Find the length of $A B$ and $A C$.
(iii) Find the ratio in which \mathbf{Q} divides AC.
(iv) Find the equation of the line AC.

Solution :

(i)

$$
\begin{equation*}
A=(4,0) \tag{i}
\end{equation*}
$$

Ans.
(ii)

$$
\begin{array}{rlrl}
\mathbf{A B} & =\sqrt{(4+2)^{2}+(0-3)^{2}} & & {[\because \mathrm{~A}=(4,0) \text { and } \mathrm{B}=(-2,3)]} \\
& =\sqrt{36+9}=\sqrt{45}=\sqrt{9 \times 5}=\mathbf{3} \sqrt{5} \text { unit } \\
\mathbf{A C} & =\sqrt{(4+2)^{2}+(0+4)^{2}} & & {[\because \mathrm{~A}=(4,0) \text { and } \mathrm{C}=(-2,-4)]} \\
& =\sqrt{36+16}=\sqrt{52}=\sqrt{4 \times 13}=\mathbf{2} \sqrt{\mathbf{1 3}} \text { unit }
\end{array}
$$

(iii) Let Q divides AC in the ratio $m_{1}: m_{2}$ i.e. $\mathrm{AQ}: \mathrm{QC}=m_{1}: m_{2}$

$$
\begin{aligned}
& \because \quad \boldsymbol{x}=\frac{m_{1} x_{2}+m_{2} x_{1}}{m_{1}+m_{2}} \\
& \Rightarrow \quad 0=\frac{m_{1} \times-2+m_{2} \times 4}{m_{1}+m_{2}} \quad \text { i.e. } 0=-2 m_{1}+4 m_{2} \\
& \Rightarrow \quad \frac{m_{1}}{m_{2}}=2 \text { or } \frac{2}{1} \text { i.e. } \boldsymbol{m}_{\mathbf{1}}: \boldsymbol{m}_{\mathbf{2}}=\mathbf{2}: \mathbf{1} \quad \text { Ans. }
\end{aligned}
$$

(iv) For AC

Slope $(m)=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{0+4}{4+2}=\frac{2}{3}$ and $\left(x_{1}, y_{1}\right)=(4,0)$
\therefore Equation of AC is: $y-y_{1}=m\left(x-x_{1}\right)$

$$
\begin{aligned}
& \Rightarrow \quad y+0=\frac{2}{3}(x-4) \\
& \Rightarrow \quad 3 y=2 x-8
\end{aligned}
$$

i.e.

$$
2 x-3 y=8
$$

Ans.
(c) Calculate the mean of the following distribution :

Class interval	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Frequency	8	5	12	35	24	16

Solution :

C.I.	\boldsymbol{f}	Class-mark (\boldsymbol{x})	$\boldsymbol{f} \boldsymbol{x}$
$0-10$	8	5	40
$10-20$	5	15	75
$20-30$	12	25	300
$30-40$	35	35	1225
$40-50$	24	45	1080
$50-60$	16	55	880
$n=\Sigma f=100$	$\Sigma x=3600$		

$$
\begin{aligned}
\therefore \quad \text { Mean } & =\frac{\sum f x}{n} \\
& =\frac{3600}{100}=\mathbf{3 6} \quad \text { Ans. }
\end{aligned}
$$

Question 7 :

(a) Two solid spheres of radii 2 cm and 4 cm are melted and recast into a cone of height $\mathbf{8} \mathbf{~ c m}$. Find the radius of the cone so formed.

Solution :

$\because \quad$ Volume of the cone $=$ Sum of volumes of the two melted spheres

$$
\begin{aligned}
\Rightarrow & \frac{1}{3} \pi(r)^{2} \times 8 & =\frac{4}{3} \pi \times(2)^{3}+\frac{4}{3} \pi \times(4)^{3} \\
\Rightarrow & 8 r^{2} & =32+256 \\
\Rightarrow & 8 r^{2} & =288 \text { i.e. } r^{2}=\frac{288}{8}=36
\end{aligned}
$$

$$
\Rightarrow \quad r=6 \quad \text { i.e. } \text { The radius of the cone }=\mathbf{6} \mathbf{~ c m} \quad \text { Ans. }
$$

(b) Find ' a ' if the two polynomials $a x^{3}+3 x^{2}-9$ and $2 x^{3}+4 x+a$, leave the same remainder when divided by $x+3$.

Solution :

$$
x+3=0 \Rightarrow x=-3
$$

Given : remainder when $a x^{3}+3 x^{2}-9$ is divided by $x+3$

$$
\begin{array}{rlrl}
& & & \text { remainder when } 2 x^{3}+4 x+a \text { is divided by } x+3 \\
\Rightarrow & a(-3)^{3}+3(-3)^{2}-9 & =2(-3)^{3}+4(-3)+a \\
\Rightarrow \quad-27 a+27-9 & =-54-12+a \\
\Rightarrow \quad-28 a & =-84 \quad \text { i.e. } \quad a=\mathbf{3}
\end{array}
$$

(c) Prove that $\frac{\sin \theta}{1-\cot \theta}+\frac{\cos \theta}{1-\tan \theta}=\cos \theta+\sin \theta$.

Solution :

$$
\begin{aligned}
\mathbf{L H S} & =\frac{\sin \theta}{1-\frac{\cos \theta}{\sin \theta}}+\frac{\cos \theta}{1-\frac{\sin \theta}{\cos \theta}} \\
& =\frac{\sin ^{2} \theta}{\sin \theta-\cos \theta}+\frac{\cos ^{2} \theta}{\cos \theta-\sin \theta} \\
& =\frac{\sin ^{2} \theta}{\sin \theta-\cos \theta}-\frac{\cos ^{2} \theta}{\sin \theta-\cos \theta}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\sin ^{2} \theta-\cos ^{2} \theta}{\sin \theta-\cos \theta} \\
& =\frac{(\sin \theta+\cos \theta)(\sin \theta-\cos \theta)}{\sin \theta-\cos \theta}=\sin \theta+\cos \theta=\text { RHS } \quad \text { Hence Proved. }
\end{aligned}
$$

Question 8 :
(a) AB and CD are two chords of a circle intersecting at P. Prove that $\mathbf{A P} \times \mathbf{P B}=\mathbf{C P} \times \mathbf{P D}$.
[3]

Solution :

Join AD and BC .
In triangles APD and CPB ,

$$
\begin{array}{rlr}
\angle \mathrm{A} & =\angle \mathrm{C} \quad \begin{aligned}
& \text { [Angles of the same segment] } \\
& \angle \mathrm{D}=\angle \mathrm{B} \\
& \Rightarrow \quad \triangle \mathrm{APD} \sim \Delta \mathrm{CPB}
\end{aligned} \\
\Rightarrow \quad \text { Angles of the same segment] } \\
\Rightarrow \quad & \text { [By A.A. postulate] } \\
\Rightarrow \quad \frac{\mathrm{AP}}{\mathrm{CP}} & =\frac{\mathrm{PD}}{\mathrm{~PB}} \Rightarrow \mathrm{AP} \times \mathbf{P B}=\mathbf{C P} \times \mathbf{P D}
\end{array}
$$

Hence Proved.
(b) A bag contains 5 white balls, 6 red balls and 9 green balls. A ball is drawn at random from the bag. Find the probability that the ball drawn is :
(i) a green ball.
(ii) a white or a red ball.
(iii) neither a green ball nor a white ball.

Solution :

Total possible outcomes $=5+6+9=20$
(i) \because No. of favourable cases $=$ No. of green balls $=9$
$\therefore \quad$ Probability of drawing a green ball $=\frac{\mathbf{9}}{\mathbf{2 0}}$
Ans.
(ii) \because No. of favourable cases $=5+6=11$
\therefore Required probability $=\frac{\mathbf{1 1}}{\mathbf{2 0}}$
Ans.
(iii) Ball drawn is neither a green nor a white ball
\Rightarrow Ball drawn is red
So the no. of favourable cases $=$ no. of red balls $=6$
\therefore Required probability $=\frac{6}{20}=\frac{\mathbf{3}}{\mathbf{1 0}}$
Ans.
(c) Rohit invested ₹ 9,600 on ₹ $\mathbf{1 0 0}$ shares at ₹ $\mathbf{2 0}$ premium paying $\mathbf{8 \%}$ dividend. Rohit sold the shares when the price rose to ₹ $\mathbf{1 6 0}$. He invested the proceeds (excluding dividend) in $\mathbf{1 0 \%} ₹ 50$ shares at ₹ $\mathbf{4 0}$. Find the :
(i) original number of shares.
(ii) sale proceeds.
(iii) new number of shares.
(iv) change in the two dividends.

Solution :

(i) \because Investment $=₹ 9,600$
and, market value of each share $=₹ 100+₹ 20=₹ 120$
\therefore Original number of shares $=₹ \frac{9,600}{120}=\mathbf{8 0}$
Ans.
(ii) \because Each share is sold for ₹ 160
\therefore Sale-proceeds $=80 \times ₹ 160=₹ \mathbf{1 2 , 8 0 0}$
Ans.
(iii) Now, investment $=₹ 12,800$
and, market value of each share $=₹ 40$
\therefore New number of shares $=₹ \frac{12,800}{40}=\mathbf{3 2 0}$
Ans.
(iv) Dividend in the $\mathbf{1}^{\text {st }}$ case :

$$
\begin{aligned}
& =\text { No. of shares } \times \text { rate of dividend } \times \text { N.V. of each share } \\
& =80 \times 8 \% \times ₹ 100=₹ 640
\end{aligned}
$$

Dividend in the $2^{\text {nd }}$ case :

$$
=320 \times 10 \% \times ₹ 50=₹ 1,600
$$

\therefore Change (increase) in two dividends $=₹ 1,600-₹ 640=₹ 960$
Ans.

Question 9 :

(a) The horizontal distance between two towers is 120 m . The angle of elevation of the top and angle of depression of the bottom of the first tower as observed from the top of the second tower is 30° and 24° respectively.
Find the height of the two towers. Give your answer correct to 3 significant figures.
[4]

Solution :

In $\triangle B C D, \tan 24^{\circ}=\frac{C D}{120 \mathrm{~m}} \Rightarrow 0.4452=\frac{C D}{120 \mathrm{~m}}$

$$
\begin{aligned}
\Rightarrow \quad \mathrm{CD} & =120 \times 0.4452 \mathrm{~m} \\
& =53.424 \mathrm{~m}=\mathrm{EB}
\end{aligned}
$$

In $\triangle \mathrm{AEC}, \quad \tan 30^{\circ}=\frac{\mathrm{AE}}{120 \mathrm{~m}} \Rightarrow \frac{1}{\sqrt{3}}=\frac{\mathrm{AE}}{120 \mathrm{~m}}$

$$
\begin{aligned}
\Rightarrow \quad \mathbf{A E}=\frac{120}{\sqrt{3}} \mathrm{~m} & =40 \sqrt{3} \mathrm{~m} \\
& =40 \times 1.732 \mathrm{~m}=\mathbf{6 9 . 2 8} \mathbf{~ m}
\end{aligned}
$$

\Rightarrow Height of tower $\mathrm{AB}=\mathrm{AE}+\mathrm{EB}$

$$
=69.28 \mathrm{~m}+53.424 \mathrm{~m}
$$

$=122.704 \mathrm{~m}=123 \mathbf{~ m}$ (correct to 3 significant figures)
Ans.
And, height of tower $\mathbf{C D}=53.424 \mathrm{~m}$

$$
=\mathbf{5 3 . 4} \mathbf{~ m} \text { (correct to } 3 \text { significant figures) }
$$

Ans.
(b) The weight of 50 workers is given below :

Weight in Kg	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$	$100-110$	$110-120$
No. of workers	4	7	11	14	6	5	3

Draw an ogive of the given distribution using a graph sheet. Take $2 \mathbf{c m}=10 \mathrm{~kg}$ on one axis and $2 \mathrm{~cm}=5$ workers along the other axis. Use the ogive drawn to estimate the following :
(i) the upper and lower quartiles.
(ii) if weighing 95 Kg and above is considered overweight, find the number of workers who are overweight.

Solution :

Weight in Kg	$50-60$	$60-70$	$70-80$	$80-90$	$90-100$	$100-110$	$110-120$
No. of workers (f)	4	7	11	14	6	5	3
c.f.	4	11	22	36	42	47	50

Plot the points $(60,4),(70,11),(80,22),(90,36),(100,42),(110,47)$ and $(120,50)$. Then draw a free-hand curve (ogive) as shown below :

$\therefore \mathrm{N}=50$
(i) Upper quartile $=\left(\frac{3 \times \mathrm{N}}{4}\right)^{\text {th }}$ term

$$
=\left(\frac{3 \times 50}{4}\right)^{\text {th }} \text { term }=37 \cdot 5^{\text {th }} \text { term }=\mathbf{9 2} \mathbf{~ k g}
$$

Ans.

Lower quartile $=\left(\frac{\mathrm{N}}{4}\right)^{\text {th }}$ term

$$
=\left(\frac{50}{4}\right)^{\text {th }} \text { term }=12 \cdot 5^{\text {th }} \text { term }=\mathbf{7 1} \mathbf{~ k g}
$$

Ans.
(ii) Through 95 kg mark, draw a vertical line that meets graph at point P . Through point P , draw a horizontal line which meets axis for $c . f$. at point A and $\mathrm{A}=39$.
\Rightarrow Weights of 39 workers are 95 kg or below it.
$\therefore \quad$ Number of workers who are overweight $=50-39=\mathbf{1 1}$
Ans.

Question 10 :

(a) A wholesaler buys a TV from the manufacturer for ₹ 25,000 . He marks the price of the TV $\mathbf{2 0 \%}$ above his cost price and sells it to a retailer at $\mathbf{1 0 \%}$ discount on the marked price. If the rate of VAT is 8%, find the :
(i) marked price.
(ii) retailer's cost price inclusive of tax.
(iii) VAT paid by the wholesaler.

Solution :

(i)

$$
\begin{aligned}
\text { Marked price } & =₹ 25,000+20 \% \text { of } ₹ 25,000 \\
& =₹ 25,000+₹ 5,000=₹ \mathbf{3 0 , 0 0 0}
\end{aligned}
$$

Ans.
(ii) For retailer :

$$
\begin{aligned}
\text { C.P. } & =\text { Marked price }- \text { Discount } \\
& =₹ 30,000-10 \% \text { of ₹ } 30,000 \\
& =₹ 30,000-₹ 3,000=₹ 27,000
\end{aligned}
$$

Tax on it $=8 \%$ of ₹ 27,000

$$
=\frac{8}{100} \times ₹ 27,000=₹ 2,160
$$

$\therefore \quad$ C.P. inclusive tax $=₹ 27,000+₹ 2,160=₹ \mathbf{2 9 , 1 6 0}$
Ans.
(iii) VAT paid by wholesaler

$$
\begin{aligned}
& =\text { Tax on S.P. }- \text { Tax on C.P. } \\
& =8 \% \text { of ₹ } 27,000-8 \% \text { of ₹ } 25,000 \\
& =8 \% \text { of } ₹ 2,000=\frac{8}{100} \times ₹ 2,000=₹ \mathbf{1 6 0}
\end{aligned}
$$

Ans.
(b) If $A=\left[\begin{array}{ll}3 & 7 \\ 2 & 4\end{array}\right]$, $B=\left[\begin{array}{ll}0 & 2 \\ 5 & 3\end{array}\right]$ and $C=\left[\begin{array}{cc}1 & -5 \\ -4 & 6\end{array}\right]$.

Find $A B-5 C$.

Solution :

$$
\begin{aligned}
\mathbf{A B}-\mathbf{5 C} & =\left[\begin{array}{ll}
3 & 7 \\
2 & 4
\end{array}\right]\left[\begin{array}{ll}
0 & 2 \\
5 & 3
\end{array}\right]-5\left[\begin{array}{cc}
1 & -5 \\
-4 & 6
\end{array}\right] \\
& =\left[\begin{array}{ll}
0+35 & 6+21 \\
0+20 & 4+12
\end{array}\right]-\left[\begin{array}{cc}
5 & -25 \\
-20 & 30
\end{array}\right] \\
& =\left[\begin{array}{ll}
35 & 27 \\
20 & 16
\end{array}\right]-\left[\begin{array}{cc}
5 & -25 \\
-20 & 30
\end{array}\right] \\
& =\left[\begin{array}{cc}
35-5 & 27+25 \\
20+20 & 16-30
\end{array}\right]=\left[\begin{array}{cc}
\mathbf{3 0} & \mathbf{5 2} \\
\mathbf{4 0} & -\mathbf{1 4}
\end{array}\right]
\end{aligned}
$$

Ans.
(c) ABC is a right angled triangle with $\angle \mathrm{ABC}=90^{\circ}$. D is any point on AB and DE is perpendicular to AC. Prove that :
(i) $\triangle \mathrm{ADE} \sim \triangle \mathrm{ACB}$.
(ii) If $\mathrm{AC}=13 \mathrm{~cm}, \mathrm{BC}=5 \mathrm{~cm}$ and $\mathrm{AE}=4 \mathrm{~cm}$. Find DE and AD.
(iii) Find, area of $\triangle \mathrm{ADE}$: area of quadrilateral BCED.
[4]

Solution :

(i) $\because \quad \angle \mathrm{ABC}=\angle \mathrm{AED}=90^{\circ}$

$$
\angle \mathrm{BAC}=\angle \mathrm{DAE} \quad(\text { Common })
$$

$\Rightarrow \triangle \mathrm{ADE} \sim \triangle \mathrm{ACB}$
(By A.A. postulate)
(ii) In $\triangle A B C$,
$\Rightarrow \quad \mathrm{AB}^{2}+\mathrm{BC}^{2}=\mathrm{AC}^{2}$
[Pythagoras theorem]

$\Rightarrow \quad \mathrm{AB}^{2}+5^{2}=13^{2}$
$\Rightarrow \quad \mathrm{AB}^{2}=169-25=144$ and $\mathrm{AB}=12 \mathrm{~cm}$
$\because \quad \triangle \mathrm{ADE} \sim \triangle \mathrm{ACB}$
$\Rightarrow \quad \frac{\mathrm{AD}}{\mathrm{AC}}=\frac{\mathrm{DE}}{\mathrm{BC}}=\frac{\mathrm{AE}}{\mathrm{AB}}$
$\Rightarrow \quad \frac{\mathrm{AD}}{13}=\frac{\mathrm{DE}}{5}=\frac{4}{12}$
$\Rightarrow \quad \frac{\mathrm{AD}}{13}=\frac{4}{12}$ and $\frac{\mathrm{DE}}{5}=\frac{4}{12}$
$\Rightarrow \quad \mathrm{AD}=\frac{4 \times 13}{12} \mathrm{~cm}$ and $\mathrm{DE}=\frac{5 \times 4}{12} \mathrm{~cm}$
$\Rightarrow \quad \mathrm{AD}=4 \frac{1}{3} \mathrm{~cm}$ and $\mathrm{DE}=1 \frac{2}{3} \mathrm{~cm}$
Ans.

$$
\text { (iii) } \begin{array}{rlrl}
& \because & \Delta \mathrm{ADE} & \sim \Delta \mathrm{ACB} \\
& \Rightarrow & \frac{\text { Area of } \triangle \mathrm{ADE}}{\text { Area of } \triangle \mathrm{ACB}}=\frac{\mathrm{AE}^{2}}{\mathrm{AB}^{2}}=\frac{4^{2}}{12^{2}}=\frac{1}{9} \\
& \Rightarrow & \frac{\text { Area }(\triangle \mathrm{ADE})}{\text { Area }(\triangle \mathrm{ACB})-\text { Area }(\triangle \mathrm{ADE})}=\frac{1}{9-1}=\frac{1}{8} \\
& \Rightarrow & \frac{\text { Area }(\triangle \mathrm{ADE})}{\text { Area (quadrilateral BCED) }}=\frac{1}{8}
\end{array}
$$

$$
\text { i.e. } \quad \text { Ar. }(\triangle \mathrm{ADE}): \text { Ar. (quadrilateral } \mathrm{BCED})=1: \mathbf{8}
$$

Ans.

Question 11 :

(a) Sum of two natural numbers is 8 and the difference of their reciprocal is $\frac{2}{15}$. Find the numbers.

Solution :

Let the natural numbers be x and $8-x$

$$
\begin{array}{lrlrl}
\Rightarrow & \frac{1}{x}-\frac{1}{8-x} & =\frac{2}{15} & \text { i.e. } & \frac{8-x-x}{x(8-x)}=\frac{2}{15} \\
\Rightarrow & 2\left(8 x-x^{2}\right) & =15(8-2 x) & \text { i.e. } & 16 x-2 x^{2}=120-30 x \\
\Rightarrow & 2 x^{2}-46 x+120=0 & \text { i.e. } & x^{2}-23 x+60=0 \\
\Rightarrow & x^{2}-20 x-3 x+60=0 & \text { i.e. } x(x-20)-3(x-20)=0 \\
\Rightarrow & (x-20)(x-3)=0 & \text { i.e. } & x-20=0 \text { or } x-3=0 \\
\Rightarrow & x=20 \text { or } x=3 & &
\end{array}
$$

Reject $x=20$ as the sum of natural numbers is 8 .
$\therefore x=3$ and $8-x=8-3=5$
\Rightarrow Required natural numbers are 3 and 5.
Ans.
(b) Given $\frac{x^{3}+12 x}{6 x^{2}+8}=\frac{y^{3}+27 y}{9 y^{2}+27}$. Using componendo and dividendo, find $x: y$. [3]

Solution :

Applying componendo and dividendo, we get :

$$
\begin{aligned}
& \frac{x^{3}+12 x+6 x^{2}+8}{x^{3}+12 x-6 x^{2}-8}=\frac{y^{3}+27 y+9 y^{2}+27}{y^{3}+27 y-9 y^{2}-27} \\
& \Rightarrow \quad \frac{(x+2)^{3}}{(x-2)^{3}}=\frac{(y+3)^{3}}{(y-3)^{3}} \quad \text { i.e. } \quad \frac{x+2}{x-2}=\frac{y+3}{y-3} \\
& \Rightarrow \quad \frac{x+2+x-2}{x+2-x+2}=\frac{y+3+y-3}{y+3-y+3} \quad \text { [Applying componendo and dividendo] } \\
& \Rightarrow \quad \frac{2 x}{4}=\frac{2 y}{6} \quad \text { i.e. } \quad \frac{x}{2}=\frac{y}{3} \\
& \Rightarrow \quad 3 x=2 y \text { and } \frac{x}{y}=\frac{2}{3} \quad \text { i.e. } \quad \boldsymbol{x}: \boldsymbol{y}=\mathbf{2}: \mathbf{3} \\
& \text { Ans. }
\end{aligned}
$$

(c) Construct a triangle ABC with $\mathrm{AB}=\mathbf{5 . 5} \mathbf{~ c m}, \mathrm{AC}=\mathbf{6} \mathbf{~ c m}$ and $\angle \mathrm{BAC}=105^{\circ}$. Hence :
(i) Construct the locus of points equidistant from BA and BC.
(ii) Construct the locus of points equidistant from B and C.
(iii) Mark the point which satisfies the above two loci as P. Measure and write the length of PC.

Solution :

Steps to construct $\triangle \mathrm{ABC}$.

1. Draw $\mathrm{AB}=5.5 \mathrm{~cm}$.
2. Construct angle $\operatorname{BAR}=105^{\circ}$.
3. From AR , cut $\mathrm{AC}=6 \mathrm{~cm}$ and complete the triangle ABC .

(i) Draw BD , the bisector of angle ABC , which is the locus of points equidistant from BA and BC .
(ii) Draw EF, the perpendicular bisector of BC , which is the locus of points equidistant from B and C .
(iii) BD and EF intersect each other at point P .
$\therefore \quad \mathbf{P}$ satisfies the above two loci.
Also, $\mathbf{P C}=\mathbf{4 . 8} \mathbf{~ c m ~ (a p p .) ~}$
Ans.
